MI
Answered byMolly I.Maths Tutor

Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.

First, recall that tan(x) can be rewritten in terms of sine and cosine.

tan(x) = sin(x)/cos(x)

The rephrasing of our question suggests that we should try the substitution rule of integration.

We should substitute u=cos(x), since then du = -sin(x) dx and so sin(x) dx = -du

So the integral of tan(x) = the integral of sin(x)/cos(x) = the integral of -1/u = - ln|u| +C = - ln|cosx| +C

Now, - ln|cos(x)| = ln(|cos(x)|-1) = ln(1/|cos(x)|) = ln|sec(x)|

Therefore, the integral of tan(x) is ln|sec(x)| + C

Related Maths A Level answers

All answers ▸

What is an integral?


Integrate the function x(2x+5)^0.5


Solving a quadratic with ax^2 e.g. 2x^2 - 11x + 12 = 0


Two particles A and B of mass 2kg and 3kg respectively are moving head on. A is moving at 5m/s and B is moving at 4m/s. After the collision, A rebounds at 4m/s. What is the speed of B and what direction is it moving in?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning