Differentiate y=(x^2+5)^7

In this example instead of multiplying out 7 brackets it is useful to use the chain rule, which is used to differentiate the composition of more than one function. If we let what is inside the bracket equal u, then u=x^2+5, and y=u^7. The chain rule states that dy/dx=du/dxdy/du, so we simply differentiate both functions and multiply them: remembering that to differentiate x^n we do nx^(x-1), du/dx=2x (as constants disappear) and dy/du=7u^6. Therefore dy/dx=2x7u^6. Now all that is left is to plug the expression for u back in to get dy/dx=2x*7(x^2+5)^6, and simplify to get dy/dx=14x(x^2+5)^6. It is simplest to leave it in this form.

RB
Answered by Rachel B. Maths tutor

6323 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you sketch r=theta? I don't really understand polar coordinates.


What is ln(10)-ln(5)?


How do you divide polynomials? How do you do it with remainder?


How do I know which is the null hypothesis, and which is the alternative hypothesis?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning