Differentiate y=(x^2+5)^7

In this example instead of multiplying out 7 brackets it is useful to use the chain rule, which is used to differentiate the composition of more than one function. If we let what is inside the bracket equal u, then u=x^2+5, and y=u^7. The chain rule states that dy/dx=du/dxdy/du, so we simply differentiate both functions and multiply them: remembering that to differentiate x^n we do nx^(x-1), du/dx=2x (as constants disappear) and dy/du=7u^6. Therefore dy/dx=2x7u^6. Now all that is left is to plug the expression for u back in to get dy/dx=2x*7(x^2+5)^6, and simplify to get dy/dx=14x(x^2+5)^6. It is simplest to leave it in this form.

RB
Answered by Rachel B. Maths tutor

5848 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y=7-2x^5, find dy/dx of this curve


If the quadratic equation kx^2+kx+1=0 has no real roots, what values of k are possible?


State the trigonometric identities for sin2x, cos2x and tan2x


A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences