Why does d/dx (tan(x)) = sec^2(x)?

This result comes from using a trig identity and the quotient rule. First, we write tan(x) as sin(x)/cos(x). Then we apply the quotient rule. After doing the standard derivatives, the numerator of our fraction becomes another trig identity, sine squared + cosine squared, which equals one. Now, looking at our fraction, we can see we have 1/cos^2(x). We can then rewrite this as (1/cos(x))^2. We apply our final trig identity now, 1/cos(x)=sec(x), and we see that d/dx tan(x) = sec^2(x). (Due to the nature of writing mathematics, this is far easier to represent and explain using the whiteboard)

TD
Answered by Tutor42661 D. Maths tutor

10478 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]


Differentiate the equation x^2 + 2y^2 = 4x


find x: e^(3x-9) = 8


Integral of Cosec(x)/Sec(x) (i.e. Use of trignometric identities)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning