A triangle has sides a,b,c and angles A,B,C with a opposite A etc. If a=4,b=3,A=40, what is the area of the triangle?

First use the sine rule (that a/sin(A)=b/sin(B)=c/sin(C)) to find the value of B. a/sin(A)=b/sin(B) so B=arcsin(bsin(A)/a) which is approximately equal to 28.82. Since the angles of a triangle have 180 degrees we then know that C is roughly equal to 111.18. Now we can use S=ab*sin(C)/2 where S is the area of the triangle so the area is roughly 5.59.

Answered by Maths tutor

2826 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that x^2 +6x+ 11 can be written as (x+p)^2 +q


The line AB has equation 3x + 5y = 7, find; a) the gradient of AB b) the x-axis and y-axis intercepts c) sketch the graph


A particle is moving in the with acceleration (2t - 3) ms^-2 and initial velocity 2ms^-1. Find the distance travelled when the velocity has reached 12ms^-1.


Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to "integral between 1 and 3 of" 1/sqrt(1+x^3) dx giving your answer to three significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning