How do I integrate sin^2 (x) dx?

The key to answering this question is to recognise that a common substitution of u=sin(x) wont work straight away so we must write the integral in a different form. Knowing that cos(2x)=1-2sin^2(x), the sin^2(x)=(1/2)(1-cos(2x)). Therefore the integral equals the integral of (1/2)(1-cos(2x)). We know the integral of cos(2x) dx is (1/2)*(sin(2x)). Thus the integral of sin^2(x)dx equals (x-(1/2)*sin(2x))/2.

OU
Answered by Oghenebrume U. Maths tutor

170986 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to solve polynomials


The straight line with equation y=3x-7 does not cross or touch the curve with equation y=2px^2-6px+4p, where p is a constant.(a) Show that 4p^2-20p+9<0 (b) Hence find the set of possible values for p.


Differentiate f(x) with respect to x. Find the stationary value and state if it is a maxima, minima or point of inflection f(x) = 6x^3 + 2x^2 + 1


I already done this.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences