How do I integrate sin^2 (x) dx?

The key to answering this question is to recognise that a common substitution of u=sin(x) wont work straight away so we must write the integral in a different form. Knowing that cos(2x)=1-2sin^2(x), the sin^2(x)=(1/2)(1-cos(2x)). Therefore the integral equals the integral of (1/2)(1-cos(2x)). We know the integral of cos(2x) dx is (1/2)*(sin(2x)). Thus the integral of sin^2(x)dx equals (x-(1/2)*sin(2x))/2.

OU
Answered by Oghenebrume U. Maths tutor

171936 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.


If a curve has equation y = (-8/3)x^3 - 2x^2 + 4x + 18, find the two x coordinates of the stationary points of this curve.


How would I go about solving 3(x-2) = x+7?


Separate (9x^2 + 8x + 10)/(x^2 + 1)(x + 2) into partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning