How do I integrate sin^2 (x) dx?

The key to answering this question is to recognise that a common substitution of u=sin(x) wont work straight away so we must write the integral in a different form. Knowing that cos(2x)=1-2sin^2(x), the sin^2(x)=(1/2)(1-cos(2x)). Therefore the integral equals the integral of (1/2)(1-cos(2x)). We know the integral of cos(2x) dx is (1/2)*(sin(2x)). Thus the integral of sin^2(x)dx equals (x-(1/2)*sin(2x))/2.

OU
Answered by Oghenebrume U. Maths tutor

173414 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations, 2x+y-5=0 and x^2-y^2=3


f(x) = (x-5)/(x^2+5x+4), express this in partial fractions and hence find the integral of f(x) dx between x=0 and x=2, giving the answer as a single simplified logarithm.


How do I find the solution of the simultaneous equations x+3y=7 and 5x+2y=8


The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning