Find the solutions to z^2 = i

Here z is a complex number, and therefore, z = a + bi. Thus, our equation becomes (a + bi)^2 = i. Expanding the brackets we get a^2 + 2abi + (b^2)(i^2) = i. Since i is the square root of -1, i^2 = the whole number -1. Then (b^2)(i^2) is equal to (b^2)(-1) or -b^2. Substituting and rearranging above we have a^2 - b^2 + 2abi = i. Now we compare real and imaginary parts on both sides. The real part on RHS is a^2 - b^2, whereas the real part on LHS is 0 (it's missing). From here follows that a^2 -b^2 = 0 or a^2 = b^2 or a = +/- b. The imaginary part on RHS is 2ab, whereas the imaginary part on LHS is 1 (notice that the imaginary part doesn't include i, only its multiple). We see that 2ab = 1 or ab = 1/2 or substituting for b we get a^2 = 1/2.
Simplifying we are left with a = square root of 1/2. Since a and b have the same values we can conclude that b = square root of 1/2 as well. Keep in mind that the equation will hold true if both a and b have negative values. a = b = +/- square root of 1/2. Therefore, our solutions for z in the form of a + b*i are: z = sqr (1/2) + sqr (1/2) * i and z = -sqr (1/2) - sqr (1/2) * i.

Answered by Viktoria B. Maths tutor

29773 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


Find the set of values of x for which 3x^2+8x-3<0.


Express the following as a partial fraction: (4x^2+12x+9) / (x^2+3x+2) .


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy