Solve the equation |3x + 4| = |3x - 11|

Here we have an equation involving absolute values. As a general rule |a| = +a and |a| = -a. We can apply that to our RHS. In the first case we get that 3x + 4 = 3x - 11, however after we subtract 3x from both sides we are left with 4 = -11, which is obviously false. Therefore, we conclude that there are no solutions for |a| = +a and we move on to |a| = -a. Applying our formula again we have 3x + 4 = - (3x - 11) or 3x + 4 = - 3x + 11. Rearranging we get that 6x = 7 or that x = 7/6.

VB
Answered by Viktoria B. Maths tutor

8030 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.


Integrate x^2e^x with respect to x between the limits of x=5 and x=0.


Show, by first principles, that the differential of x^2 is 2x.


y =(4x)/(x^2+5) (a) Find dy/dx, writing your answer as a single fraction in its simplest form. (b) Hence find the set of values of x for which dy/dx<0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning