Solve the equation |3x + 4| = |3x - 11|

Here we have an equation involving absolute values. As a general rule |a| = +a and |a| = -a. We can apply that to our RHS. In the first case we get that 3x + 4 = 3x - 11, however after we subtract 3x from both sides we are left with 4 = -11, which is obviously false. Therefore, we conclude that there are no solutions for |a| = +a and we move on to |a| = -a. Applying our formula again we have 3x + 4 = - (3x - 11) or 3x + 4 = - 3x + 11. Rearranging we get that 6x = 7 or that x = 7/6.

VB
Answered by Viktoria B. Maths tutor

7745 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality 4x^2​>5x-1


Factorise completely ( x − 4x^3)


How can you express the complex number z = 2 + 3i in the form z = r(cos x + i sinx)


Integrate 2x/(x^2+3) using the substitution u=x^2+3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences