Differentiate y=sin(x)*x^2.

Using the chain rule, we let u = sin(x) and v = x^2. Then dy/dx = udv/dx + vdu/dx. dv/dx = 2x and du/dx = cos(x). So dy/dx = sin(x)2x + x^2cos(x).

LM
Answered by Lucy M. Maths tutor

4121 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.


Evaluate f'(1) for the function f(x) = (x^2 + 2)^5


dx/dt=-5x/2 t>=0 when x=60 t=0


Find dy/dx for y = x^3*e^x*cos(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning