Differentiate y=sin(x)*x^2.

Using the chain rule, we let u = sin(x) and v = x^2. Then dy/dx = udv/dx + vdu/dx. dv/dx = 2x and du/dx = cos(x). So dy/dx = sin(x)2x + x^2cos(x).

LM
Answered by Lucy M. Maths tutor

4124 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx of the curve x^3+5xy-2y^2-57=0


Find the general solution to the differential equation '' (x^2 + 3x - 1) dy/dx = (2x + 3)y ''


Prove that the d(tan(x))/dx is equal to sec^2(x).


Express the fraction (p+q)/(p-q) in the form m+n√2, where p=3-2√2 and q=2-√2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning