How do you find the inverse of a function?

So you are asked to find the inverse of a function f(x).
The inverse function is denoted by f -1(x).
To help with this we can use the identity f(f -1(x))=x.
Now, we need to define y=f -1(x).
Example:
f(x)=2x+1
x=f(f -1(x))=f(y)=2y+1                    As f(y) is similar to f(x) but with the variable change of x to y
Hence, we need to solve:           
x=2y+1                                                                
x-1=2y                                                  Minus 1 from each side of the equation
½(x-1)=y=f -1(x)                                                As we defined f -1(x)=y
Therefore, we have found the inverse function: f -1(x) = ½(x-1)

We can continue further and find the domain and range of an inverse function using the identities:
Domain f(x) = Range f -1(x)
Range f(x) = Domain f -1(x)

RJ
Answered by Ryan J. Maths tutor

6566 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following: 5x^3


A curve is defined by the parametric equations: X = 3 – 4t , y = 1 + (2/t) Find (dy/dx) in terms of t.


Solve the equation 5^x = 8, giving your answer to 3 significant figures.


Find the exact gradient of the curve y = ln(1-cos 2x) at the point with x-coordinate π/6.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning