Given that y = (( 4x + 1 )^3)sin(2x), find dy/dx.

This is an example of the chain rule.

The chain rule is the following: if y = uv, then dy/dx = udv/dx + vdu/dx

So in this case, u = ( 4x + 1)^3, v = sin(2x)

du/dx = (3)(4)( 4x + 1 )^2, dv/dx = 2cos(2x)

dy/dx = (12( 4x + 1)^2)sin(2x) + 2(( 4x + 1)^3)cos(2x)

DS
Answered by Danielle S. Maths tutor

5253 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you do simple integration?


Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)


Integrate the function f(x)=lnx


log3 (9y + b) – log3 (2y – b) = 2, Find y in terms of b.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning