When integrating, why do we add a constant to the resulting equation?

The +c is to represent the loss in information after differentiation. Remember, integration is just the reverse of differentiation. Say we had this function:

f(x) = 2x^2 + 1 And we differentiate: f'(x) = 4x

Now take this second function: g(x) = 2x^2 + 4 And differentiating gives us: g'(x) = 4x

We can see that g'(x) = f'(x). So, if we try and integrate 4x, what do we get? Would it be 2x^2 + 1, or 2x^2 + 4?

The answer is it could be either. Or 2x^2 + 3. Or 2x^2 + 109823.1203981! There are infinite solutions to integration, depending on how you got there from differentiating. That's why we add the +c - to represent all the different possibilities.

TC
Answered by Tom C. Maths tutor

3643 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate (3x)e^(3x)


Use logarithms to solve the equation 2^(5x) = 3^(2x+1) , giving the answer correct to 3 significant figures


The line L1 has vector equation,  L1 = (  6, 1 ,-1  ) + λ ( 2, 1, 0). The line L2 passes through the points (2, 3, −1) and (4, −1, 1). i) find vector equation of L2 ii)show L2 and L1 are perpendicular.


Show that cosec(2x) + cot(2x) = cot(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences