When integrating, why do we add a constant to the resulting equation?

The +c is to represent the loss in information after differentiation. Remember, integration is just the reverse of differentiation. Say we had this function:

f(x) = 2x^2 + 1 And we differentiate: f'(x) = 4x

Now take this second function: g(x) = 2x^2 + 4 And differentiating gives us: g'(x) = 4x

We can see that g'(x) = f'(x). So, if we try and integrate 4x, what do we get? Would it be 2x^2 + 1, or 2x^2 + 4?

The answer is it could be either. Or 2x^2 + 3. Or 2x^2 + 109823.1203981! There are infinite solutions to integration, depending on how you got there from differentiating. That's why we add the +c - to represent all the different possibilities.

TC
Answered by Tom C. Maths tutor

4169 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you differentiate the term 3x^3-2x^2+x-10


Given that Sin(A) = 1/sqrt(3), show that Tan(A) = 1/sqrt(2)


if f(x) = 7x-1 and g(x) = 4/(x-2), solve fg(x) = x


A curve C has equation: y = x^2 − 2x − 24x^1/2, x > 0; Find (i) dy/dx (ii) d^2y/dx^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning