find dy/dx of the equation y=ln(x)2x^2

Here it is necessary to use the chain rule to solve the derivative. If we equate our equation in terms of the following notation: ln(x)='u'and 2x^2='v' and use the chain rule formula dy/dx=udv/dx+vdu/dx we can solve the derivative:

= lnx(4x)+(2x^2)(1/x) = 4xlnx+2x

PG
Answered by Pierce G. Maths tutor

4144 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where z is a complex number, what is the cartesian form of |Z-2+3i| = 1?


A line L is parallel to y=4x+5 and passes through the point (-1, 6). Find the equation of the line L in the form y=ax+b . Find also the coordinates of its intersections with the axes.


How do I find the turning points of a curve?


When using the trapezium rule to approximate area underneath a curve between 2 limits, what is the effect of increasing the number of strips used?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning