Find the general solution, in degrees, of the equation 2 sin(3x+45°)= 1

A general way of solving these equations is getting them to the form sin(y)=k. In this case, to do so, we have to divide by 2 and then put y=3x+45° We then get sin(y)=1/2. You should know which angles have sine equal to 1/2: those are 30° and 150°.However, be careful: you have to write the solution including the fact that the sine is periodic! So the general solution is y= 30° + k360°, y=150°+k360°, for every integer value of k. Now we just remember what y was, and solve the equation for x. We get 3x+45° = 30°+k360° x = -5° + k120° = 115° + k120° and x=35°+k 120°. Usually, it is a good habit to write separately all the solutions lying in the interval [0°, 360°], and in this case those are x=35°,115°,155°,235°,275°,355°.

CG
Answered by Cesare Giulio A. Maths tutor

8514 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.


What is a stationary point and how do I find where they occur and distinguish between them?


If we have a vector 4x + 6y + z and another vector 3x +11y + 2z then what is the angle between the two?Give the answer in radians


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning