Find the general solution, in degrees, of the equation 2 sin(3x+45°)= 1

A general way of solving these equations is getting them to the form sin(y)=k. In this case, to do so, we have to divide by 2 and then put y=3x+45° We then get sin(y)=1/2. You should know which angles have sine equal to 1/2: those are 30° and 150°.However, be careful: you have to write the solution including the fact that the sine is periodic! So the general solution is y= 30° + k360°, y=150°+k360°, for every integer value of k. Now we just remember what y was, and solve the equation for x. We get 3x+45° = 30°+k360° x = -5° + k120° = 115° + k120° and x=35°+k 120°. Usually, it is a good habit to write separately all the solutions lying in the interval [0°, 360°], and in this case those are x=35°,115°,155°,235°,275°,355°.

CG
Answered by Cesare Giulio A. Maths tutor

8332 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle of weight 15N is resting on a plane inclined at an angle of 30°. Find : a) the normal force exerted on the particle, b) the coefficient of friction between the particle and the plane, providing it is in limiting equilibrium


How would I differentiate a function such as f(x)=x^3(e^(2x))?


In the case of vectors, how do I find the shortest distance between a point and a line?


Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences