How do I find the cartesian equation for a curve written in parametric form?

Reminder - a cartesian equation is written in terms of x and y (e.g. y = 2x + 3) while parametric equations are written with x and y separately in terms of t.

Example: Find the cartesian equation of the curve given by these parametric equations:

x = 2t + 1, y = 1/t (where t is not equal to zero)

First make t the subject in one of the equations.

x = 2t (then divide both sides by 2)

x/2 = t

Now substitute your result for t into the second equation.

y = 1/t (then substitute in t = x/2)

y = 1/(x/2) (then simplify)

y = 2/x

This is now in cartesian form.
 

AO
Answered by Alexis O. Maths tutor

10854 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line PQ is the diameter of a circle, where points P and Q have the coordinates (4,7) and (-8,3) respectively. Find the equation of the circle.


What is the best way to prove trig identities?


Find the area contained under the curve y =3x^2 - x^3 between 0 and 3


Find the equation of the tangent to the circle (x-3)^2 + (y-4)^2 = 13 that passes through the point (1,7)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning