integrate xsin(x)

This question is to be done by integration by parts because it has "two types" of integrals. To perform integration by parts, we need to first split the function into its two parts, producing x and sin(x). Following the equation of integration by parts, we need to differentiate one half of the function and integrate the other half. When choosing, always differentiate the side that will not have an x term in the answer. sin(x) differentiates into cos(x), so that's not what we want. X on the other hand differentiates into one. Therefore, we want to differentiate x and integrate sin(x).

Following the rule of integration by parts, we have: x*-cos(x)-integral(1*sin(x)) =-xcos(x)-integral(sin(x)) =-xcos(x)-(-cos(x)) =-xcos(x)+cos(x)

SF
Answered by Sam F. Maths tutor

5426 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


What is a radian?


Find the point of intersection of the lines y=2x-7 and 4y-2=3x


Show that (1 - cos(2x)) / (1 + cos(2x)) = sec^2(x) - 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences