Two lines have equations r_1=(1,-1,2)+a(-1,3,4) and r_2=(c,-4,0)+b(0,3,2). If the lines intersect find c:

If the lines intersect the position vectors r_1 and r_2 must be equal at the point of intersection, so: (1,-1,2)+a(-1,3,4)=(c,-4,0)+b(0,3,2) which gives three equations for the three components: 1-a=c, -1+3a=-4+3b, 2+4a=2b. From the last two obtain b=5 and a=2 then substitute in the first to find c=-1.

AZ
Answered by Aleksandar Z. Maths tutor

4506 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the "complete the square" method, solve the following x^2 +4x - 21 =0


Differentiate arctan(x) with respect to x. Leave your answer in terms of x


Find dy/dx in terms of t for the curve given by the parametric equations x = tan(t) , y = sec(t) for -pi/2<t<pi/2.


Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning