Use integration by parts to find the integral of sin(x)*exp(x)

First, we choose u=sin(x),v'=exp(x). Using differentiation and integration of standard exponential and trigonometric functions => u'=cos(x),v=exp(x). From this we use the formula for integration by parts which tells us that the integral of a product can be given by I=uv-int(vu'). Therefore I=sin(x)*exp(x)-int(exp(x)*cos(x)). Since we have another integral of a product, integration by parts must be applied again to our new integral which we can call I'=int(exp(x)*cos(x). Now, we choose u=cos(x),v'=exp(x) => u'=-sin(x),v=exp(x). Again, using the formula, we have I'= cos(x)*exp(x)-int(-sin(x)*exp(x)) I'=cos(x)*exp(x)+int(sin(x)*exp(x)). This seems to be unsolvable, since the trigonometric functions behave in a cycle under differentiation and integration, and exp(x) is unaffected. However, in this circumstance there is a trick that leads to your solution. Notice that in the equation for I' we have the integral of sin(x)*exp(x). This was what we were initially tasked with finding, and so this expression can be replaced simply with I, so I'=cos(x)*exp(x)+I. Now we have our expression for I' we can substitute it back into our equation for I, which leads to I=sin(x)*exp(x)-(cos(x)*exp(x)+I) I=sin(x)*exp(x)-cos(x)*exp(x)-I 2I=sin(x)*exp(x)-cos(x)exp(x) 2I=exp(x)[sin(x)-cos(x)] I=1/2exp(x)[sin(x)-cos(x)]+C. Ensure not to forget the constant of integration C at the end there.

Answered by Philip L. Maths tutor

4329 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate using the chain rule?


Given that y= 1/ (6x-3)^0.5 find the value of dy/dx at (2;1/3)


How can I understand eigenvalues and eigenvectors?


You have a five-litres jug, a three-litres jug, and unlimited supply of water. How would you come up with exactly four litres of water (with no measuring cup)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy