How do you differentiate using the chain rule?

In order to differentiate using the chain rule,you first need to know the chain rule. Chain rule : dy/dt * dt/dx = dy/dx.

It is basic multiplication to get rid of the common factor of 'dt' in both equations to give dy/dx.

You would begain by differentiating the general y = something t and x = something t. This will give you the dy/dt and dx/dt. You would then find th recepricol of dx/dt to give dt/dx. Then multiply with the dy/dt you found before. This is known as the chain rule. 

NG
Answered by Niha G. Maths tutor

3642 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


Why does ln(x) differentiate to 1/x ?


Prove that the derivative of tan(x) is sec^2(x).


Solve for 0=<x<360 : 2((tanx)^2) + ((secx)^2) = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning