x is inversely proportional to P. When P = 6, x =2. What does x = when P = 4?

We know x is inversely proportional to P, so immediately we know their relationship is of the form x = k/P , where k is a constant. We are also given some conditions we can use to solve for k: when x = 2, P = 6. Subbing these into our equation: 2 = k/6, and multiplying both sides by 6 gives k = 12. We can now substitute this in for our second conditions, when P = 4. As k is a constant its value remains unchanged, even as P and x do, therefore: x = 12/4 i.e x = 3.

AS
Answered by Alec S. Maths tutor

3333 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write (√(18)+10)/√(2) in the form: p + q√2 [4 marks]


Point A (-3,5) and point B (1,-15) are to be connected to form a straight line, fing the equation of the line in the form y=mx+c?


What's the inverse of the function f=x+2?


If L1 is y = 3x + 15 and L2 is 3y + 20 = 9x show whether or not L1 and L2 are parallel.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences