x is inversely proportional to P. When P = 6, x =2. What does x = when P = 4?

We know x is inversely proportional to P, so immediately we know their relationship is of the form x = k/P , where k is a constant. We are also given some conditions we can use to solve for k: when x = 2, P = 6. Subbing these into our equation: 2 = k/6, and multiplying both sides by 6 gives k = 12. We can now substitute this in for our second conditions, when P = 4. As k is a constant its value remains unchanged, even as P and x do, therefore: x = 12/4 i.e x = 3.

AS
Answered by Alec S. Maths tutor

3764 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

ABCD is a square of side 10 cm. Each side of the square is a tangent to the circle. Work out the total area of the shaded regions in terms of . Give your answer in its simplest form.


Use approximations to 1 significant figure to estimate the value of 0.101 x (51.2)^2 / (3.96)^1/2


A straight line goes through (0,1), (2,5) and (4,9). The equation of the straight line is y=2x+1. Is the point (7,12) on this straight line?


How do you expand brackets?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning