By writing tan x as sin x cos x , use the quotient rule to show that d dx ðtan xÞ ¼ sec2 x .

First write tanx as sinx/cosx as it is always helpful to use what additional information the question gives you. It says we must use the quotient rule to calculate the result so it is also a good idea to write out the quotient rule so we know what values we need to work out. Quotient rule: dy/dx = (u'v-v'u)/v^2 where u=sinx and v=cosx. So we are required to work out u' and v'. Once we have done this, we substitute all the values into the quotient rule. Then using the identity sin^2(x)+cos^2(x)=1 we can see that dy/dx=1/cos^2(x). Now 1/cosx=secx, thus dy/dx=sec^2(x).

DB
Answered by Daniel B. Maths tutor

6741 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.


How would you differentiate ln(x^2+3x+5)?


In a geometric series, the first and fourth terms are 2048 and 256 respectively. Calculate r, the common ratio of the terms. The sum of the first n terms is 4092. Calculate the value of n.


How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning