By writing tan x as sin x cos x , use the quotient rule to show that d dx ðtan xÞ ¼ sec2 x .

First write tanx as sinx/cosx as it is always helpful to use what additional information the question gives you. It says we must use the quotient rule to calculate the result so it is also a good idea to write out the quotient rule so we know what values we need to work out. Quotient rule: dy/dx = (u'v-v'u)/v^2 where u=sinx and v=cosx. So we are required to work out u' and v'. Once we have done this, we substitute all the values into the quotient rule. Then using the identity sin^2(x)+cos^2(x)=1 we can see that dy/dx=1/cos^2(x). Now 1/cosx=secx, thus dy/dx=sec^2(x).

DB
Answered by Daniel B. Maths tutor

6366 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the y-coordinate minimum point of y = 3x^2 + x - 4


The element of a cone has length L. For what height H (with respect to L) will the volume of the cone be the largest?


Given that y=((4x+1)^3)sin2x. Find dy/dx.


If y = (4x^2)ln(x) then find the second derivative of the function with respect to x when x = e^2 (taken from a C3 past paper)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences