How do you solve a quadratic inequality eg find the values of x for which x^2 -6x +2 < -3

First we must change our inequality so that we have a zero on one side, In this case we can add three to both sides of the inequality, this gives: x^2 - 6x +5 < 0 Now let's consider the equation y = x^2 - 6x +5 We must find the values of x for which the corresponding y value is less than zero. Let's factorise our equation in order to find our x-intercepts, the points at which y=0, we get: (x-1)(x-5)=0 meaning x=1 and x=5 are our x intercepts. As we have a positive x^2, we know our quadratic will be u shaped, so the area below the x-axis, where y is below zero and therefore x^2 - 6x +5 <0 is given by 1 < x < 5. We can confirm this by drawing our graph.

IR
Answered by Isobel R. Maths tutor

4557 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the inverse of y = (5x-4) / (2x+3)


How would I differentiate y = 3xy + 2x^2 + x^2y^2 ?


Differentiate the following with respect to x: e^(10x) + ln(6x+2)


How do you find the point or points of intersection of a straight line and a circle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning