Integrate (x+3)^(1/2) .dx

[whiteboard feature does not seam to be working here] 

Here we need to make a U sibstitution. So we take (x+3) and make this equal U so we now have the integral of u^1/2   . dx

In order to switch to .du and do this integral we need to find du in terms of dx. 

Hence by writting u=(x+3)  we find that du/dx =  =2   so du=2.dx This leaves us with the integral of 2u^(1/2) .du which we can evaluate to be (4/3)(u^1.5). 

Now to get this in terms of x for a final answer we know u=(x+3) so we just rewrite the answer in terms of x giving a final answer: 

(4/3)((x+3)^1.5)

CZ
Answered by Callum Z. Maths tutor

4508 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise completely x − 4 x^3


Find the radius and centre of the circle given x^2+4x+y^2+2y=20


Solve |3x+1| = 1


The quadratic equation (k+1)x^2+12x+(k-4)=0 has real roots. (a) Show that k^2-3k-40<=0. (b) Hence find the possible values of k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning