How can i add algebraic fractions, such as 1/(1-x) + 2/x

The trick to working out how to do this, is to remember how to add normal fractions! We know 1/8 + 3/8 = 4/8 . The point here is that IF THE DENOMINATORS ARE THE SAME, we can add the numerators. So what about 1/3 + 1/4 = ??? Its not straight away obvious what to do but if we could make the denominators the same, adding the fractions would be easy. We look for numbers in the times tables of both 3 and 4 , for example 12 = 3x4. Why do this?? Well because we know we can write each fraction as (something)/12. For example 1/3 =(4x1)/(4x3) = 4/12 and 1/4 = (3x1)/(3x4) = 3/12. Finally we are ready to add the fractions, 1/3 + 1/4 = 4/12 + 3/12 = 7/12.

Lets apply this thinking to the algebraic fractions. The two denominators are (1-x) and (x) so we can write both fractions as (something)/x(1-x). For example 1/(1-x) = x/x(1-x) and 2/x = 2(1-x)/x(1-x) .... so 1/(1-x) + 2/x = x/x(1-x) + 2(1-x)/x(1-x) = (x + 2 - 2x )/x(1-x) = (2-x)/x(1-x). Done! Again the point is that once both fractions had the same denominator, we could add the numerators.

MW
Answered by Matthew W. Maths tutor

3834 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations, make sure to show clear algebraic working: 3x + 5y = 14, 4x + 3y = 4


The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a.


I am struggling to solve algebra equations. I was given the following equation to solve at school and am unsure how to approach it : 4(x + 3) = 2x + 8


Solve 3x+7=8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences