Susan is researching the population growth of a city. She proposes that x, the number of people in the city, t years after 2017 is given by x=250,000e^(0.012t) A.population in 2017 B.population in 2020 C.During which year would the population have doubled

A. t=0 ; x=250,000 B. 2020, so t=3. plug in to equation > x=250,000e^(0.012)3 = 259,163 (people so cannot round up) C. Population to double so 500,000 = 250,000e^(0.012)t -> 1/0.012(ln2) = t t= 57.7 years ; 2017 + 57 = 2074 when population doubles

JG
Answered by James G. Maths tutor

4510 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that f(x) = (x^2 + 3)(5 - x), find f'(x).


Fnd ∫x^2e^x


Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.


What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning