Susan is researching the population growth of a city. She proposes that x, the number of people in the city, t years after 2017 is given by x=250,000e^(0.012t) A.population in 2017 B.population in 2020 C.During which year would the population have doubled

A. t=0 ; x=250,000 B. 2020, so t=3. plug in to equation > x=250,000e^(0.012)3 = 259,163 (people so cannot round up) C. Population to double so 500,000 = 250,000e^(0.012)t -> 1/0.012(ln2) = t t= 57.7 years ; 2017 + 57 = 2074 when population doubles

JG
Answered by James G. Maths tutor

4421 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to differentiate using the Product Rule


Express the following in partial fractions: (1+2x^2)/(3x-2)(x-1)^2


Differentiate x^3 + 6x + 1


Solve the simultaneous equations: y+4x+1=0 and y^2+5x^2+2x=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning