Susan is researching the population growth of a city. She proposes that x, the number of people in the city, t years after 2017 is given by x=250,000e^(0.012t) A.population in 2017 B.population in 2020 C.During which year would the population have doubled

A. t=0 ; x=250,000 B. 2020, so t=3. plug in to equation > x=250,000e^(0.012)3 = 259,163 (people so cannot round up) C. Population to double so 500,000 = 250,000e^(0.012)t -> 1/0.012(ln2) = t t= 57.7 years ; 2017 + 57 = 2074 when population doubles

JG
Answered by James G. Maths tutor

4457 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.


differentiate 3x^56


What are the roots of 3x^2 + 13x + 4 ?


A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning