Find the x co-ordinates of the stationary points of the graph with equation y = cos(x)7e^(x). Give your answer in the form x = a +/- bn where a/b are numbers to be found, and n is the set of integers.

The stationary points on a curve of the form y=f(x) are where dy/dx = 0. To find dy/dx, differentiate using the product rule: dy/dx = 7e^x(d/dx(cosx)) + cosx(d/dx(7e^x)) = -sinx(7e^x) + cosx(7e^x). Now set dy/dx = 0: -sinx(7e^x) + cosx(7e^x) = 0. Factorising and dividing both sides by 7 gives: e^x(cosx - sinx) = 0. e^x never equals zero, hence we have cosx - sinx = 0. Taking sinx to the other side and dividing both sides by cosx gives: tanx = 1. We have x = arctan(1) = pi/4 using a calculator. Since tanx is repeats every pi radians, the complete range of solutions is x = pi/4 +/- npi where n is the set of integers.

JS
Answered by Joseph S. Maths tutor

7272 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the unit hyperbola, whose equation is given by x^2 - y^2 = 1. We denote the origin, (0, 0) by O. Choose any point P on the curve, and label its reflection in the x axis P'. Show that the line OP and the tangent line to P' meet at a right angle.


A curve has the equation, 6x^2 +3xy−y^2 +6=0 and passes through the point A (-5, 10). Find the equation of the normal to the curve at A.


Differentiate y = (6x-13)^3 with respect to x


Given that A(sin θ + cos θ) + B(cos θ − sin θ) ≡ 4 sin θ, find the values of the constants A and B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning