Integrate the expression cos^2(x).

This is a common question in C4 and the trick used to solve it is often used in sub-sections to full questions.

To solve it, we must simplify the expression in terms of cos(2x) using two trigonometric identities: "cos(2x) = cos2x - sin2x" and "sin2x + cos2x = 1". The result of these two expressions gives us "cos2x = 0.5cos(2x) + 0.5". We can now obtain the final solution by integrating this expression knowing that cos(x) integrates to sin(x), giving "0.25sin(2x) + 0.5x + c". The c term, representing a constant, is essential in the answer as we have not defined the integral between any limits.

RT
Answered by Rohan T. Maths tutor

5476 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate sin(x^3) with respect to y


Solve the following equation by completing the square: x^2 + 6x + 3 = 0.


If I have the equation of a curve, how do I find its stationary points?


A medical test will be positive for 0.05% of people and negative for everyone else. Suppose a hospital will test 4000 patients each day. Use an appropriate approximation to find the probability that 5 people test positive tomorrow. (5SF)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning