Find the x co-ordinates of the stationary points of the graph with equation y = cos(x)7e^(x). Give your answer in the form x = a +/- bn where a/b are numbers to be found, and n is the set of integers.

The stationary points on a curve of the form y=f(x) are where dy/dx = 0. To find dy/dx, differentiate using the product rule: dy/dx = 7e^x(d/dx(cosx)) + cosx(d/dx(7e^x)) = -sinx(7e^x) + cosx(7e^x). Now set dy/dx = 0: -sinx(7e^x) + cosx(7e^x) = 0. Factorising and dividing both sides by 7 gives: e^x(cosx - sinx) = 0. e^x never equals zero, hence we have cosx - sinx = 0. Taking sinx to the other side and dividing both sides by cosx gives: tanx = 1. We have x = arctan(1) = pi/4 using a calculator. Since tanx is repeats every pi radians, the complete range of solutions is x = pi/4 +/- npi where n is the set of integers.

JS
Answered by Joseph S. Maths tutor

7264 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.


How do you find the stationary points of a graph?


f(x) = 2x^3 – 7x^2 + 4x + 4 (a) Use the factor theorem to show that (x – 2) is a factor of f(x). (2) (b) Factorise f(x) completely.


Find the integral of the following equation: y = cos^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning