Prove that √2 is irrational

Prove by contradiction: Assume negation to be true i.e. √2 is rational Then √2 can be written in the form a/b where a and b are integers with no common factor (the fraction cannot be simplified) => a/b = √2 => a = b√2 => a^2 = 2b^2 => a^2 is even, so 2 is a factor of a. Therefore let a = 2k, where k is a whole number greater than zero => (2k)^2 = 2b^2 from above => 4k^2 = 2b^2 => b = 2k^2 => b is even, so 2 is a factor of b. Therefore a and b have a common factor of 2. This contradicts our original assumption that a and b have no common factor. Therefore our assumption that √2 is rational is false Therefore √2 is irrational.

PM
Answered by Paul M. Maths tutor

6893 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line y=5-x intersects the curve y=x^2-3x+2 at the points P and Q. Find the (x,y) coordinates of P and Q.


AS Maths ->Expresss x^2 + 3x + 2 in the form (x+p)^2 + q... where p and q are rational number


A curve is defined by the parametric equations x=(t-1)^3, y=3t-8/(t^2), t is not equal to zero. Find dy/dx in terms of t.


Differentiate y=(3+sin(2x))/(2+cos(2x))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences