Prove that √2 is irrational

Prove by contradiction: Assume negation to be true i.e. √2 is rational Then √2 can be written in the form a/b where a and b are integers with no common factor (the fraction cannot be simplified) => a/b = √2 => a = b√2 => a^2 = 2b^2 => a^2 is even, so 2 is a factor of a. Therefore let a = 2k, where k is a whole number greater than zero => (2k)^2 = 2b^2 from above => 4k^2 = 2b^2 => b = 2k^2 => b is even, so 2 is a factor of b. Therefore a and b have a common factor of 2. This contradicts our original assumption that a and b have no common factor. Therefore our assumption that √2 is rational is false Therefore √2 is irrational.

PM
Answered by Paul M. Maths tutor

7291 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let z=x+yi such that 16=5z - 3z*, What is z?


find the integral between the limits 0 and pi/2 of sin(x)cos(x) with respect to x.


A curve is described by f(x) = x^2 + 2x. A second curve is described by g(x) = x^2 -5x + 7. Find the point (s) where both curves intersect.


How do you solve a Differential equation using integrating factors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning