Prove that √2 is irrational

Prove by contradiction: Assume negation to be true i.e. √2 is rational Then √2 can be written in the form a/b where a and b are integers with no common factor (the fraction cannot be simplified) => a/b = √2 => a = b√2 => a^2 = 2b^2 => a^2 is even, so 2 is a factor of a. Therefore let a = 2k, where k is a whole number greater than zero => (2k)^2 = 2b^2 from above => 4k^2 = 2b^2 => b = 2k^2 => b is even, so 2 is a factor of b. Therefore a and b have a common factor of 2. This contradicts our original assumption that a and b have no common factor. Therefore our assumption that √2 is rational is false Therefore √2 is irrational.

PM
Answered by Paul M. Maths tutor

7427 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to integrate ∫ xlnx dx


Using the factor theorem, factorise x^4 - 3x^3 - 3x^2 + 11x - 6


Integrate | x^7 (ln x)^2 dx ( | used in place of sigma throughout question)


The rate of decay of the mass is modelled by the differential equation dx/dt = -(5/2)x. Given that x = 60 when t = 0, solve the quation for x in terms of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning