Use integration by parts to integrate ∫ xlnx dx

∫ u(dv/dx) dx = uv − ∫ v(du /dx)dx is the Integration by Parts formula. 

If you set u=lnx, differentiation (rememeber from tables) leads to du/dx= 1/x, and dv/dx=x and so v=x^2/2 (raise power by one then divide by that).

Plugging this into the equation, f(x)=(x^2/2)lnx- ∫(x^2/2)/x dx, just taking the RHS integral -> 1/2∫x dx = x^2/4 +C and so combining all of this f(x)=(x^2/2)lnx-x^2/4 +C. 

MM
Answered by Minty M. Maths tutor

21703 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Exponential Growth Equations


A cannon at ground level is firing at a fort 200m away with 20m high walls. It aims at an angle 30 degrees above the horizontal and fires cannonballs at 50m/s. Assuming no air resistance, will the cannonballs fall short, hit the walls or enter the fort?


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


Differentiate y = 3x4-8x3-3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning