Use integration by parts to integrate ∫ xlnx dx

∫ u(dv/dx) dx = uv − ∫ v(du /dx)dx is the Integration by Parts formula. 

If you set u=lnx, differentiation (rememeber from tables) leads to du/dx= 1/x, and dv/dx=x and so v=x^2/2 (raise power by one then divide by that).

Plugging this into the equation, f(x)=(x^2/2)lnx- ∫(x^2/2)/x dx, just taking the RHS integral -> 1/2∫x dx = x^2/4 +C and so combining all of this f(x)=(x^2/2)lnx-x^2/4 +C. 

MM
Answered by Minty M. Maths tutor

21697 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the parametric equations x = t^2 and y = 2t -1 find dy/dx


Solve the equation 7^(x+1) = 3^(x+2)


Solve for x, 5sin(x) - 3cos(x) = 2 , in the interval 0<x<2pi


The curve C has the parametric equations x=4t+3 and y+ 4t +8 +5/(2t). Find the value of dy/dx at the point on curve C where t=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning