Use integration by parts to integrate ∫ xlnx dx

∫ u(dv/dx) dx = uv − ∫ v(du /dx)dx is the Integration by Parts formula. 

If you set u=lnx, differentiation (rememeber from tables) leads to du/dx= 1/x, and dv/dx=x and so v=x^2/2 (raise power by one then divide by that).

Plugging this into the equation, f(x)=(x^2/2)lnx- ∫(x^2/2)/x dx, just taking the RHS integral -> 1/2∫x dx = x^2/4 +C and so combining all of this f(x)=(x^2/2)lnx-x^2/4 +C. 

MM
Answered by Minty M. Maths tutor

21714 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find f''(x), Given that f(x)=5x^3 - 6x^(4/3) + 2x - 3


How do I remember what trig functions differentiate to?


Prove the identity (sin2x)/(1+(tanx)^2) = 2sinx(cosx)^3


Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning