If given two parametric equations for a curve, how would you work out an equation for the gradient?

Parametric equations will have both the x and the y coordinates expressed in terms of another paramater, usually t. Gradients of curves are expressed in the form of an equation of dy/dx, in order to work out the gradient from parametric equations, first the student should differentiate the x equation, giving dx/dt. Then differentiate the y equation, giving dy/dt.

To work out dy/dx, from these, it is necessary to multiply the differential of y (dy/dt) by the inverse of the differential of x (dt/dx) so the dt in both equations cancels out and we are left with only x and y. The resulting dy/dx equation is the equation for the gradient of the curve. 

MW
Answered by Mollie W. Maths tutor

3878 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how do you differentiate tan(x)


A curve has the equation (x+y)^2 = xy^2. Find the gradient of the curve at the point where x=1


Calculate the binomial expansion of (2x+6)^5 up to x^3 where x is decreasing.


I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences