If given two parametric equations for a curve, how would you work out an equation for the gradient?

Parametric equations will have both the x and the y coordinates expressed in terms of another paramater, usually t. Gradients of curves are expressed in the form of an equation of dy/dx, in order to work out the gradient from parametric equations, first the student should differentiate the x equation, giving dx/dt. Then differentiate the y equation, giving dy/dt.

To work out dy/dx, from these, it is necessary to multiply the differential of y (dy/dt) by the inverse of the differential of x (dt/dx) so the dt in both equations cancels out and we are left with only x and y. The resulting dy/dx equation is the equation for the gradient of the curve. 

MW
Answered by Mollie W. Maths tutor

4456 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


How do I know if I am using the right particular integral when solving a differential equation


What is the best way to prove trig identities?


find dy/dx when y=x^3 + sin2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning