Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4

Firstly, to find the stationary points of a curve you must differentiate the equation of the curve. To do this each x component is multiplied by its current power and then the power is decreased by one. Any terms without x are simply removed. This gives dy/dx = 6x^2 - x - 2. For stationary points the derivative is then set equal to 0. In this case to find the x values the derivative should be factorised, giving (2x+1)(3x-2)=0. Each of these can be treated separately as (2x+1)=0 and (3x-2)=0. These can then be rearranged to give x = 1/2 and x = 2/3.

BS
Answered by Bartosz S. Maths tutor

5958 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: y = sin(2x).


Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.


Solve the equation: log5 (4x+3)−log5 (x−1)=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning