Use the substitution u=4x-1 to find the exact value of 1/4<int<1/2 ((5-2x)(4x-1)^1/3)dx

We are required to solve this integral using integration by substitution, in which we assign a variable to equal a certain region of the integrated function in this case, 4x-1. The purpose of this is to remove of the remaining integral, by changing the derivative such that the function is integratable. so if u=4x-1 then du/dx=4, and thus dx=du/4, now by substitution, int(5-2x)(4x-1)1/3dx= int(5-(u+1)/2)/4(u1/3)du; in this instance x=(u+1)/4 therefore 5-2x=5-(u+1)/2. Now by expanding the brackets we have int((5/4)-(u/8)-(1/8))(u1/3)du=int((5u1/3/4)-(u4/3/8)-(u1/3/8))du=int(9u1/3/8)-(u4/3/8)du. Now this integral is solvable, & so = [(27u4/3/32)-3u7/3/56]; what's more the limits of this integral will change when the subtitution is carried out. Simply sub, 1/2&1/4 into 4x-1, and they become 1 and 0, therefore the value of the integral is 27/32-3/56-0= 177/224

TR
Answered by Taylor R. Maths tutor

6266 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


What is a hypothesis test


How do we know which formulas we need to learn for the exam?


State the trigonometric identities for sin2x, cos2x and tan2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning