How do you differentiate a function comprised of two functions multiplied together?

The product rule is useful when you’re dealing with a function comprised of two functions multiplied together. Generally, if you have a function of the form y = f(x)g(x), then the derivative of the function would be dy/dx = f(x)g'(x) + g(x)f'(x). As with any derivative, it is easiest to write it in notation that raises a variable to a power using numbers by applying the rules for indices. Once you have done this, make it clear to yourself the two different functions being multiplied together. Using the general results of differentiation, find the derivative of the second function (g’(x)) and multiply it to the first function (f(x)), then find the derivative of the first function (f’(x)) and multiply it by the second function (g(x)). When differentiating either of the two functions you may also need to apply the chain rule. An example of when the product rule could be applied would be for the following function:

y=x^2(5x-1)^1/2 

EG
Answered by Elliot G. Maths tutor

9109 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the identity (4cos(2x))/(1+cos(2x)) = 4-2sec^2(x)


A man travels 360m along a straight road. He walks for the first 120m at 1.5ms-1, runs the next 180m at 4.5ms-1, and then walks the final 60m at 1.5ms-1. A women travels the same route, in the same time. At what time does the man overtake the women?


Differentiate y=e^(x)*sin(x) with respect to x


Integrate (3x^2-x^3)dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning