Solve the differential equation: dy/dx = 6x^2 + 4x + 9

dy/dx = 6x2 + 4x + 9

dy = (6x2 + 4x + 9) dx 

integrating gives:

y= (6x3/3) + (4x2/2) + 9x + c

y= 2x3 + 2x2 + 9x + c

If given boundary conditions of y(0)=0 then 

0 = 2(0)3 + 2(0)2 +9(0) +c 

therefore c=0 

so y= 2x3 + 2x2 + 9x

JH
Answered by Jack H. Maths tutor

11274 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.


x = 2t + 5, y = 3 + 4/t. a) Find dy/dx at (9.5) and b) find y in terms of x.


How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


How would you work out the equation of the normal at a point (2,5) given the equation of a line?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning