Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.

f'(x)=9x2​+4x, and f''(x)=18x+4 (derivatives) 

f'(x)=0 at x=0 or x=-4/9

when x=0 f''(x)>0 therefore a minimum value, when x=-4/9 f''(x)<0 and thus a maximum value. 

SO
Answered by Sieff O. Maths tutor

4016 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the x-values of the turning points on the graph, y=(3-x)(x^2-2)


How would you use the following expression to approximate [(4-5x)/(1+2x)(2-x)] when x=5 (A2 pure)


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning