How to solve the absolute-value inequalities?

Absolute value means how far away you are from zero. It's better to draw a number line to understand and solve the question. 

Given the inequality l 4x+3 l >15 , the distance of the 4x+3 value from 0 must be greater than 15, so 4x+3 has to be either greater than 15 or less than -15 (negative 15). so it becomes

4x+3 > 15 or 4x+3< -15

Then subtract 3 from both sides, 4x >12 or 4x < -18, 

divided by 4 , so the inequalities become x > 3 or x < -9/2 which are the solutions. 

 

 

CC
Answered by Cynthia C. Maths tutor

9122 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 2 ln(3) + ln(11) as a single natural logarithm


Find f''(x), Given that f(x)=5x^3 - 6x^(4/3) + 2x - 3


Differentiate y=x^3*(x^2+1)


At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning