How to solve the absolute-value inequalities?

Absolute value means how far away you are from zero. It's better to draw a number line to understand and solve the question. 

Given the inequality l 4x+3 l >15 , the distance of the 4x+3 value from 0 must be greater than 15, so 4x+3 has to be either greater than 15 or less than -15 (negative 15). so it becomes

4x+3 > 15 or 4x+3< -15

Then subtract 3 from both sides, 4x >12 or 4x < -18, 

divided by 4 , so the inequalities become x > 3 or x < -9/2 which are the solutions. 

 

 

CC
Answered by Cynthia C. Maths tutor

8202 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


Work out the equation of the tangent at x = 3, knowing that f(x) =x^2


Show that the cubic function f(x) = x^3 - 7x - 6 has a root x = -1 and hence factorise it fully.


A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences