The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.

As B is a stationary point, the value of dy/dx at this point must be equal to 0. Differentiating y gives this to be dy/dx = 6x2-2ax+8. At point Bx=4. This gives the relation 104=8a and thus gives a=13.

EH
Answered by Evan H. Maths tutor

8560 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the second derivate d^2y/dx^2 when y = x^6 + sqrt(x).


What is a Derivative?


How do you integrate tan^2(x)?


Solve the following equation: 4(sinx)^2+8cosx-7=0 in the interval 0=<x=<360 degrees.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning