The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.

As B is a stationary point, the value of dy/dx at this point must be equal to 0. Differentiating y gives this to be dy/dx = 6x2-2ax+8. At point Bx=4. This gives the relation 104=8a and thus gives a=13.

EH
Answered by Evan H. Maths tutor

8129 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the identity: (sinx - tanx)(cosx - cotx) = (sinx - 1)(cosx - 1)


How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?


A particle, P, moves along the x-axis. The displacement, x metres, of P is given by 0.5t^2(t^2 - 2t + 1), when is P instantaneously at rest


Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences