The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.

As B is a stationary point, the value of dy/dx at this point must be equal to 0. Differentiating y gives this to be dy/dx = 6x2-2ax+8. At point Bx=4. This gives the relation 104=8a and thus gives a=13.

EH
Answered by Evan H. Maths tutor

8472 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the curve y = 3x^2 + 6x^1/3 + (2x^3)/3x^1, find an expression for the gradient of the curve.


Find all possible values of θ for tan θ = 2 sin θ with the range 0◦ ≤ θ ≤ 360◦


Integrate 4x^3 with respect to x


Integrate cos^2x + cosx + sin^2x + 3 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning