The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.

As B is a stationary point, the value of dy/dx at this point must be equal to 0. Differentiating y gives this to be dy/dx = 6x2-2ax+8. At point Bx=4. This gives the relation 104=8a and thus gives a=13.

EH
Answered by Evan H. Maths tutor

8310 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the 1st derivative of y = x^2 + 7x +3 and hence find the curves minima.


Integrate sin^2(x)


a curve is defined by y=2x^2 - 10x +7. point (3, -5) lies on this curve. find the equation of the normal to this curve


Solve the simultaneous equation y+4x+1=0 and y^2+5x^2+2x+0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences