How would I use implicit differentiation to differentiate functions such as: y=tan^-1(ax^2+b) in the form of dy/dx=.....?

First you must write the function in terms on something you know how to differentiate, for example... by taking tan (..) of both sides the equation becomes, tan(y)= ax+b. We then use implicit differentiation. So in our case, tan(y) goes too sec2(y)*dy/dx when differentiating y with respect to x on the left hand side of our re-aranged equation, using the chain rule. The right hand side is completed as normal with respect to x. Leaving us with dy/dx * sec2(y) = 2ax.  This gets us to a final answer of dy/dx = 2ax / (sec2(y)) = 2ax * cos2(y). Using the identity Sin2(x)+Cos2(x)=1 we can get the result in terms of x.

CS
Answered by Charles S. Maths tutor

5747 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does differentiation work like it does.


A girl kicks a ball at a horizontal speed of 15ms^1 off of a ledge 20m above the ground. What is the horizontal displacement of the ball when it hits the ground?


Let N be an integer not divisible by 3. Prove N^2 = 3a + 1, where a is an integer


How do I find the maxima and minima of f(x) = e^(x^2)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning