Find the derivative of f(x)= ln(|sin(x)|). Given that f(x) has a value for all x, state why the modulus is required.

The derivative can be found by using the chain rule. i.e. let g(x) = |sin(x)|, so f(x)=ln(g(x)), hence df/dx = df/dg * dg/dx

df/dg = 1/g, dg/dx = |cos(x)| so df/dx = |cos(x)|/|sin(x)|

For the second part, it is key to recognise that if y is negative then ln(y) is indeterminate. Hence if no modulus is present f(x) is indeterminate when sin(x) is negative.

LK
Answered by Luke K. Maths tutor

10313 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show the sum from n=0 to 200 of x^n given that x is not 1, is (1-x^201)/(1-x) hence find the sum of 1+2(1/2)+3(1/2)^2+...+200(1/2)^199


In a triangle ABC, side AB=10 cm, side AC=5cm and the angle BAC=θ, measured in degrees. The area of triangle ABC is 15cm(sq). Find 2 possible values for cosθ and the exact length of BC, given that it is the longest side of the triangle.


How do I add up the integers from 1 to 1000 without going insane?


Find CO-Ordinates of intersection of 2x+3y=12 and y=7-3x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences