Find the derivative of f(x)= ln(|sin(x)|). Given that f(x) has a value for all x, state why the modulus is required.

The derivative can be found by using the chain rule. i.e. let g(x) = |sin(x)|, so f(x)=ln(g(x)), hence df/dx = df/dg * dg/dx

df/dg = 1/g, dg/dx = |cos(x)| so df/dx = |cos(x)|/|sin(x)|

For the second part, it is key to recognise that if y is negative then ln(y) is indeterminate. Hence if no modulus is present f(x) is indeterminate when sin(x) is negative.

LK
Answered by Luke K. Maths tutor

11849 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I remember the coefficients of a Taylor expansion?


How do I remember the common values of cosx, sinx and tanx?


show that y = (kx^2-1)/(kx^2+1) has exactly one stationary point when k is non-zero.


Find the positive value of x such that log (x) 64 = 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning