Find the intersection points between the graphs y=2x+5 and y=x^2-9.

To do this, first draw a sketch of both graphs to see roughly what kind of result we should expect to get. We know that at the intersection points, the values of x and y for both graphs must be equal. so set both graphs equal to each other and we get

2x+5=x^2-9

rearranging this equation we then get

0=x^2-2x-14

We then use the quadratic formula to get values for x, for which you get 

x=1+squ. root(15) and x=1- squ. root(15) .          (sorry i didn't know how to insert squ. root symbol)

we then substitute both values into either equation (since we're looking at intersection points) and we get

y=7+ 2squ root(15) and y=7-2squ root(15).

SB
Answered by Srinivass B. Maths tutor

3165 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)


The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


Find the first derivative of y=2^x


Find the antiderivative of the function f(x)=cos(2x)+5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences