Find the intersection points between the graphs y=2x+5 and y=x^2-9.

To do this, first draw a sketch of both graphs to see roughly what kind of result we should expect to get. We know that at the intersection points, the values of x and y for both graphs must be equal. so set both graphs equal to each other and we get

2x+5=x^2-9

rearranging this equation we then get

0=x^2-2x-14

We then use the quadratic formula to get values for x, for which you get 

x=1+squ. root(15) and x=1- squ. root(15) .          (sorry i didn't know how to insert squ. root symbol)

we then substitute both values into either equation (since we're looking at intersection points) and we get

y=7+ 2squ root(15) and y=7-2squ root(15).

SB
Answered by Srinivass B. Maths tutor

3267 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that 2(1-cos(x)) = 3sin^2(x) can be written as 3cos^2(x)-2cos(x)-1=0.


Solve for x, 5sin(x) - 3cos(x) = 2 , in the interval 0<x<2pi


Sketch y = 9x – 4x^3, showing where the curve crosses the x axis.


Find the stationary points of the curve y=x^4-8x^2+3 and determine their nature.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning