Find the antiderivative of the function f(x)=cos(2x)+5.

In order to find the antiderivative of the function we're given, we first have to study the general structure of the function. This function consists of a sum between cos(2x) and 5. Therefore, we have : F(x)=∫cos(2x)dx+∫5dx.
We will first focus on ∫cos(2x)dx. Let's solve this by substitution. Let g(x)=2x. We have : ∫cos(g(x))g'(x)dx=∫cos(u)du=sin(u)+C. Hence, ∫cos(2x)*2dx=sin(2x)+C. Thus, ∫cos(2x)=sin(2x)/2+C.
Let's now focus on ∫5dx. This one is fairly easy as we know how to integrate constants: We have ∫5dx = 5x+C.
Therefore, F(x)=(sin(2x)/2)+5x+c

TD
Answered by Tutor149135 D. Maths tutor

5194 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

x is an angle, if 180 > x > 90 and sinx = √2 / 4 what is the value of angle x


How do I differentiate y=(4+9x)^5 with respect to x?


The polynomial f(x) is define by f(x) = 3x^3 + 2x^2 - 8x + 4. Evaluate f(2).


A level Maths question - The graph of y=2sin(2x)+1 is rotated 360 degrees about the x-axis to form a solid. Find the volume enclosed by the curve, the co-ordinate axes and the line x=pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning