a) Simplify 2ln(2x+1) - 10 = 0 b) Simplify 3^(x)*e^(4x) = e^(7)

a) To answer this question, one must be familiar with laws of logs, more sprecifically the rules when applied to the natural log of x, and exponentials (e). 2ln(2x+1) - 10 = 0 Step 1) 2ln(2x+1) = 10 Step 2) ln(2x+1) = 10/2 = 5 Step 3) using the fact that e^(ln(x)) = x, e^(ln(2x+1)) = e^(5) = 2x + 1 Step 4) to find x on its own, we simply rearrange this equation to give x = (e^(5)-1)/2 which is the final answer.                                     b) This question again requires the knowledge of the laws of logs, specifically the natural log of x, and also the rule regarding division of exponential functions. 3^(x)*e^(4x) = e^(7) Step 1) ln(3^(x)*e^(4x)) = ln(e^(7)) = 7 Step 2) ln(3^(x)) + ln(e^(4x)) = 7 Step 3) using 2 different laws of logs, (lna^b = blna) and (lne^(a) = a), xln3 = 7 - 4x Step 4) simple rearrangment gives xln3 + 4x = 7 Step 5) Factorising gives x(ln3 + 4) = 7 and therefore x = 7 / (ln3 + 4)

JB
Answered by Jordan B. Maths tutor

13463 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I am struggling understanding how to differentiate negative indices. I get confused with the power increasing or decreasing.


The curve C has the equation y = 2e^x -6lnx and passes through the point P with x - coordinate 1. a) Find the equation to the tangent to C at P


Find the normal to the curve y = x^2 at x = 5.


Differentiate: f(x)=2(sin(2x))^2 with respect to x, and evaluate as a single trigonometric function.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences