Differentiate sin(x)cos(x) using the product rule.

The product rule states (assuming x' is the differential of x): (fg)​′​​=f​′​​g+fg​′​​ Substitute the values into the rule: (sin(x)cos(x))' = sin(x)'cos(x) + sin(x)cos(x)' (sin(x)cos(x))' = cos2(x) - sin2(x)

MP
Answered by Manibharathi P. Maths tutor

9741 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line y = (a^2)x and the curve y = x(b − x)^2, where 0<a<b , intersect at the origin O and at points P and Q. Find the coordinates of P and Q, where P<Q, and sketch the line and the curve on the same axes. Find the tangent at the point P.


Given that y= x/(2x+5), find dy/dx


Sketch the graphs of y = f(x), y = g(x) and find the point(s) where f and g intersect.


Find the area under the curve y = sin(2x) + cos(x) between 0 and pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning