How do you use the completing the square method to solve a quadratic equation?

First you need to get the quadratic equation in completed square form. 
This looks like: (x+p)^2 + q 

To put an expression in completed square form you can use this formula: x^2 + 2bx + c = (x+b)^2 - b^2 + c

Once in this form you can solve the equation for x by rearranging. 

For example: solve x^2 + 4x -5=0 using the completing the square method.

Using the formula with b = 2 and c = -5 gives: (x+2)^2 – 2^2 – 5 = 0

And simplifying leads to:

(x+2)^2 – 9 = 0 Rearranging gives:

(x+2)^2 = 9

x + 2 = ± 3

x = - 2 ± 3 

So the answers are:

x = 1 or x= -5

CP
Answered by Caroline P. Maths tutor

3666 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would you prepare for your Maths exam?


What actually IS 'differentiation'?


White paint costs £2.80 per litre. Blue paint costs £3.50 per litre. White paint and blue paint are mixed in the ratio 3 : 2 Work out the cost of 18 litres of the mixture.


x - 2y = 1 , x^2 + y^2 = 13 find the solutions to this quadratic equation


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning