What is the point of differentiation?

Differentiation is a very useful concept; informally it tells us how 'fast' something is changing. A real-life example is given by the first and second derivatives of distance with respect to time: the first derivative represents speed and the second derivative represents acceleration. It turns out there are higher-order derivatives called jerk, snap, crackle, and pop!

JH
Answered by Jake H. Maths tutor

9316 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.


I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))


What is greater e^pi or pi^e?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences