Differentiate y=(3x-1)/(2x-1)

First, recognise that the function is a fraction and recall the quotient rule.     y=u/v     dy/dx=(vu'-uv')/v2, where u' and v' is the derivative of u and v respectively. Then, apply the rule.     u=3x-1, v=2x-1     u'=3, v'=2     dy/dx=[3(2x-1)-2(3x-1)]/(2x-1)2 Finally, simplify the expression.     dy/dx=1/(2x-1)2

MM
Answered by Martin M. Maths tutor

7617 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal line at the point H, where θ= π/6, on the curve with equations x=3sinθ and y=5cosθ


Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)


1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


find the gradient of the tangent to the curve y=x^2 at the point (4,16)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning