Evaluate the indefinite integral: ∫ (e^x)sin(x) dx

Note: for what’s about to come, ' denotes derivative with respect to x. Method 1 (integration by parts): let I = (e^x)sin(x) dx let u = sin(x), u' = cos(x) and v' = e^x = v then integrate by parts, => I = uv - ∫u’v dx, substitute in u,v and u’ obtains: I =(e^x)sin(x) - ∫ (e^x)cos(x) dx () Now integrate by parts ∫ (e^x)cos(x) dx: let a = cos(x), a' = -sin(x) and b' = b = e^x hence: ∫ (e^x)cos(x) dx =(e^x)cos(x) + I, substitute into (): I = (e^x)(sin(x) + cos(x)) - I + C, for some constant C => I = 1/2(e^x)(sin(x) + cos(x)) + C  Method 2 (compare coefficients): Let y = (e^x)(Acos(x) + Bsin(x)), for some constants A, B to be determined => y' =(e^x)((A+B)cos(x) + (B-A)sin(x)) ≡(e^x)sin(x), hence by comparing coefficients, we have: B - A = 1 and A + B = 0 => B = 1/2, A = -1/2 => y = (1/2)(e^x)(sin(x) + cos(x)) + D, for some constants D

SN
Answered by ShenZhen N. Maths tutor

12412 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = 2x^2 + x - 1 at the point where x = 1.


An 1kg ball collides normally with a fixed vertical wall. Its incoming speed is 8 m/s and its speed after the collision is 4 m/s . Calculate the change in momentum of the particle. If the collision lasts 0.5 s calculate the impact force.


Find the values of x such that: (log3(81)+log2(32))/(log2(x)) = log2(x) (5 marks)


The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning