How to differentiate y=(x^2+4x)^5

To differentiate y=(x2+4x)5 you need to use the chain rule. The chain rule uses the fact that dy/dx = dy/dt * dt/dx. 

Here we create a new variable t, where t = x2+4x. Substituting this in the original equation gives y=t5

Differentiating t=x2+4x with respect to x; dt/dx = 2x+4

Differentiating y=t5 with respect to t; dy/dt = 5t4

We can combine these two equations to find dy/dx, as the chain rule states dy/dx = dy/dt * dt/dx.

This gives dy/dx = 5t4*(2x+4)

Substituting in our value of t, gives the final answer dy/dx = 5(x2+4x)4(2x+4)

AM
Answered by Alexandra M. Maths tutor

6574 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate x^2 + 2x + 5x^-1


integrate 1/((1-x^2)^0.5) between 0 and 1


Write 5x^2 + 30x + 36 in the form 5(x+A)^2+B where A and B are integers to be found.Then write the equation of symmetry for the graph of 5x^2 + 30x + 36


Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences