When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.

*The usual mistake with inequalities is not with a students algebra, but with lack of consideration of the inequality signs. During a tutorial I would show their false method and my correct one and also sketch (or get them to sketch) the graphs of both sides so they know how to check their answers.

When solving inequalities remember that whenever you multiply or divide both sides by a negative number you must flip the sign. So -2x > 3 means our solution is x < -3/2 NOT x > -3/2. So solving inequalities is not a simple as solving equations. So far simple, but what if we need to multiply both sides by something involving x? Taking your example 1/(x+2) > x/(x-3), we want to multiply both sides by (x+2)(x-3).

We do not know if this is positive or negative. Our trick here is to multiply by ((x+2)(x-3))2  which is ALWAYS positive, so the inequality sign does not change. We can now solve this algebraically. This technique can be used for any inequality, just multiply both sides by what you really want to multiply by SQUARED.

TH
Answered by Timothy H. Maths tutor

3901 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


Given (x-2) is a factor of ax^3 + ax^2 + ax - 42, find the value of a


When do I use the product rule as opposed to the chain rule?


What is the chain rule? when do I have to use it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning